The Moon, long considered a cold and barren landscape, has just revealed a fascinating new secret. Hidden beneath its far side lies a massive heat-emitting feature that has scientists buzzing with questions. This isn’t just any ordinary discovery—it involves a rare geological phenomenon typically associated with Earth.
Join a community of 14,000,000+ Seekers!
Subscribe to unlock exclusive insights, wisdom, and transformational tools to elevate your consciousness. Get early access to new content, special offers, and more!
How could a body with no plate tectonics or water create something so unexpected? What does this mean for the Moon’s history and its volcanic past? As researchers dig deeper into this puzzling find, they’re uncovering clues that could reshape our understanding of the Moon and perhaps even other rocky worlds in the solar system. Curious?
The Discovery
In a groundbreaking revelation, scientists have identified a substantial heat-emitting granite mass beneath the Moon’s surface, specifically near the Compton and Belkovich craters on its far side. This discovery was made possible through data collected by both Chinese and American lunar orbiters, which utilized microwave frequency observations to detect subsurface temperatures. Dr. Matt Siegler of the Planetary Science Institute explained, “We used an instrument that observes microwave wavelengths, longer than infrared, sent to the Moon on both the Chinese Chang’E 1 and 2 orbiters. We found that one of these suspected volcanoes, known as Compton-Belkovich, was absolutely glowing at microwave wavelengths.”
The data revealed a silicon-rich surface feature approximately 20 kilometers wide, believed to be the caldera of an ancient volcano. This area exhibited temperatures about 10°C warmer than its surroundings. Notably, this heat is not due to current volcanic activity, as the last eruption occurred around 3.5 billion years ago. Instead, the heat emanates from radioactive elements trapped within the granite mass. Dr. Siegler noted, “We interpret this heat flux as resulting from a radiogenic-rich granite body below the caldera.”
This finding is significant because granite formation typically requires water and plate tectonics—conditions absent on the Moon. The presence of such a large granite deposit suggests that the Moon’s geological history may be more complex than previously understood. Dr. Siegler remarked, “If you don’t have water, it takes extreme situations to make granite. So, here’s this system with no water, and no plate tectonics—but you have granite.”
The discovery was detailed in a study published in the journal Nature on July 5, 2023. The research team utilized microwave frequency data to measure heat below the surface of the Compton-Belkovich volcanic complex, leading to the identification of the granite mass.
This revelation not only enhances our understanding of the Moon’s volcanic past but also opens new avenues for exploring similar geological features on other celestial bodies. The presence of granite on the Moon challenges existing theories about its formation and suggests that other areas of the Moon, and possibly other parts of the solar system, may harbor similar features.
What Makes Granite Special?
Granite is a coarse-grained igneous rock predominantly composed of quartz, feldspar, and mica. On Earth, its formation is closely linked to the presence of water and the dynamic processes of plate tectonics. These conditions facilitate the melting of the Earth’s crust, leading to the creation of large magma bodies that cool slowly beneath the surface, crystallizing into granite.
The discovery of a substantial granite mass beneath the Moon’s surface is particularly intriguing because the Moon lacks both water and active plate tectonics—key elements in granite formation on Earth. This raises compelling questions about the geological processes that could have led to the formation of granite in such an environment. As Dr. Matt Siegler of the Planetary Science Institute noted, “If you don’t have water, it takes extreme situations to make granite. So, here’s this system with no water, and no plate tectonics—but you have granite.”
The presence of granite on the Moon suggests that alternative mechanisms may be at play. One possibility is that the Moon’s interior experienced localized heating events, potentially from radioactive decay, leading to partial melting and the formation of granite. This hypothesis is supported by the detection of heat emanating from the granite mass, attributed to radioactive elements trapped within the rock. Dr. Siegler explained, “We interpret this heat flux as resulting from a radiogenic-rich granite body below the caldera.”

Unraveling Lunar Volcanic History
Approximately 3.5 billion years ago, the Moon experienced significant volcanic activity, leading to the formation of vast basaltic plains known as lunar maria. These dark regions, visible from Earth, are the result of ancient lava flows that filled large impact basins. The discovery of a substantial granite mass beneath the Compton-Belkovich volcanic complex adds a new dimension to this narrative. Granite formation typically requires prolonged cooling periods and specific conditions, suggesting that parts of the Moon’s crust underwent complex magmatic processes.
The presence of granite, a rock rich in silica, indicates that the Moon’s volcanic activity was not limited to basaltic eruptions but also included more evolved magmatic processes. This challenges the traditional view of the Moon’s geology and suggests that its interior was capable of producing diverse rock types. As Dr. Matt Siegler of the Planetary Science Institute noted, “This is more Earth-like than we had imagined can be produced on the Moon, which lacks the water and plate tectonics that help granites form on Earth.”
The heat emanating from the granite mass is attributed to radioactive elements trapped within the rock. These elements, such as uranium and thorium, decay over time, releasing heat—a process known as radiogenic heating. This phenomenon suggests that the Moon’s interior contained sufficient radioactive material to sustain prolonged volcanic activity. Dr. Siegler explained, “We interpret this heat flux as resulting from a radiogenic-rich granite body below the caldera.”
The Role of Radioactive Heat
The unexpected heat emanating from the granite mass beneath the Moon’s surface is primarily due to radioactive decay within the rock. Granite is known to contain higher concentrations of radioactive elements such as uranium and thorium compared to other rocks. As these elements decay, they release heat—a process known as radiogenic heating. This phenomenon is well-documented on Earth, where the decay of radioactive isotopes contributes to the planet’s internal heat budget.
In the context of the Moon, the detection of a heat anomaly beneath the Compton-Belkovich volcanic complex suggests the presence of a radiogenic-rich granite body. Dr. Matt Siegler of the Planetary Science Institute explained, “We interpret this heat flux as resulting from a radiogenic-rich granite body below the caldera.”
The presence of such a heat source indicates that the Moon’s interior once contained sufficient radioactive material to sustain prolonged volcanic activity. This challenges previous assumptions about the Moon’s thermal evolution and suggests that its interior was more geologically active than previously thought.
Understanding the role of radiogenic heating on the Moon not only provides insights into its volcanic history but also offers a comparative framework for studying other celestial bodies. For instance, the internal heating of terrestrial planets, including Earth, is significantly influenced by the decay of radioactive isotopes.
What This Means for Lunar Geology

The discovery of a substantial granite mass beneath the Moon’s surface, particularly in the Compton-Belkovich region, has profound implications for our understanding of lunar geology. Granite formation typically requires specific conditions, such as the presence of water and plate tectonics—factors absent on the Moon. This finding challenges existing theories about the Moon’s geological processes and suggests that its interior may have been more complex and dynamic than previously thought.
Dr. Matt Siegler of the Planetary Science Institute highlighted the significance of this discovery, stating, “This is more Earth-like than we had imagined can be produced on the Moon, which lacks the water and plate tectonics that help granites form on Earth.”
The presence of granite indicates that the Moon’s crust may have undergone processes leading to the differentiation and evolution of its interior, resulting in the formation of silica-rich rocks. This challenges the traditional view of the Moon as a geologically inactive body and opens new avenues for research into its thermal and magmatic history.
Furthermore, the detection of heat emanating from the granite mass, attributed to radioactive decay, suggests that the Moon’s interior contained sufficient radioactive elements to sustain prolonged volcanic activity. This finding aligns with the hypothesis that the Moon experienced a complex volcanic history, with localized heating events leading to the formation of diverse rock types.
Implications for Future Lunar Exploration
The discovery of a substantial granite mass beneath the Moon’s surface, particularly in the Compton-Belkovich region, has profound implications for future lunar exploration. This finding challenges existing theories about the Moon’s geological processes and suggests that its interior may have been more complex and dynamic than previously thought.
Granite formation typically requires specific conditions, such as the presence of water and plate tectonics—factors absent on the Moon. The presence of granite indicates that the Moon’s crust may have undergone processes leading to the differentiation and evolution of its interior, resulting in the formation of silica-rich rocks. This challenges the traditional view of the Moon as a geologically inactive body and opens new avenues for research into its thermal and magmatic history.
A New Chapter in Lunar Mysteries
The discovery of a heat-emitting granite mass beneath the Moon’s far side opens an exciting chapter in lunar exploration. It not only challenges our understanding of the Moon’s volcanic history but also redefines what we know about its geological evolution. This unexpected find of Earth-like granite on a body without water or tectonic activity raises questions about how celestial bodies develop under unique conditions.
More importantly, this discovery paves the way for future missions. Understanding the Moon’s hidden geological features can help prioritize landing sites, explore potential resources, and deepen our knowledge of planetary formation. It also serves as a stepping stone for studying other rocky bodies in our solar system, unveiling the universal mechanisms that shape planets and moons.
As scientists continue to delve deeper into these mysteries, the Moon reminds us that even familiar celestial neighbors can hold surprises, waiting for the right moment to be uncovered.







